Step of Proof: filter_fseg
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
filter
fseg
:
T
:Type,
P
:(
T
),
L2
,
L1
:(
T
List). fseg(
T
;
L1
;
L2
)
fseg(
T
;filter(
P
;
L1
);filter(
P
;
L2
))
latex
by ((((((Auto
)
CollapseTHEN (ParallelOp ( -1)
))
)
CollapseTHEN (ExRepD
))
)
CollapseTHEN (
C
((((((if (first_bool T:b) then HypSubst' else RevHypSubst') ( -1)( 0))
)
CollapseTHENA (Auto
))
C
)
CollapseTHEN (((((InstConcl [filter(
P
;
L
)])
CollapseTHEN (Auto
))
)
CollapseTHEN (((
C
RWO "filter_append" 0)
CollapseTHEN (Auto
))
))
))
))
latex
C
.
Definitions
filter(
P
;
l
)
,
fseg(
T
;
L1
;
L2
)
,
||
as
||
,
i
j
,
A
B
,
P
Q
,
P
Q
,
P
&
Q
,
[
car
/
cdr
]
,
,
SQType(
T
)
,
P
Q
,
{
T
}
,
,
{
x
:
A
|
B
(
x
)}
,
t
T
,
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
Type
,
s
=
t
,
type
List
,
as
@
bs
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
s
~
t
Lemmas
bool
wf
,
fseg
wf
,
non
neg
length
,
cons
one
one
,
guard
wf
,
nat
wf
,
member
wf
,
filter
append
origin